Función convexa o cóncava hacia arriba
Podemos determinar las funciones convexa y concaba hacia arriba utilizando el criterio de la segunda derivada y algunos ejemplos.
CRITERIOS:
- Convexidad : una funciónF(incógnita)f ( x )es convexa en un intervalo si su segunda derivada es no negativa en ese intervalo, es decir,F""(incógnita)≥0F"( x )≥0.
- Concavidad : una funciónF(incógnita)f ( x )es cóncava en un intervalo si su segunda derivada es no positiva en ese intervalo, es decir,F""(incógnita)≤0F"( x )≤0.
Ejercicios de ejemplo
Ejercicio 1: Función Cuadrática
Consideremos la función:F(incógnita)=incógnita2f ( x )=incógnita2
- Primera Derivada :
F"(incógnita)=2incógnitaF"( x )=2x
- Segunda Derivada :
F""(incógnita)=2F"( x )=2Dado queF""(incógnita)=2>0F"( x )=2>0para todoincógnitaincógnita, la funciónF(incógnita)=incógnita2f ( x )=incógnita2es convexa en todoRR.
Ejercicio 2: Función Cúbica
Consideremos la función:gramo(incógnita)=incógnita3−3incógnitag ( x )=incógnita3−3 veces
- Primera Derivada :
gramo"(incógnita)=3incógnita2−3gramo"( x )=3 veces2−3
- Segunda Derivada :
gramo""(incógnita)=6incógnitagramo"( x )=6xLa segunda derivada cambia de signo. Para determinar los intervalos de convexidad y concavidad:
- gramo""(incógnita)>0⇒incógnita>0gramo"( x )>0⇒incógnita>0(convexa)
- gramo""(incógnita)<0⇒incógnita<0gramo"( x )<0⇒incógnita<0(cóncava)
Por lo tanto,gramo(incógnita)g ( x )es convexa en(0,∞)( 0 ,∞ )y cóncava en(−∞,0)( − ∞ ,0 ).
Ejercicio 3: Función Exponencial
Consideremos la función:yo(incógnita)=miincógnitah ( x )=miincógnita
- Primera Derivada :
yo"(incógnita)=miincógnitayo"( x )=miincógnita
- Segunda Derivada :
yo""(incógnita)=miincógnitayo"( x )=miincógnitaDado queyo""(incógnita)=miincógnita>0yo"( x )=miincógnita>0para todoincógnitaincógnita, la funciónyo(incógnita)=miincógnitah ( x )=miincógnitaes convexa en todoRR.
Ejercicio 4: Función Logarítmica
Consideremos la función:a(incógnita)=−En(incógnita)k ( x )=−en ( x )En el intervalo(0,∞)( 0 ,∞ ).
- Primera Derivada :
a"(incógnita)=−1incógnitaa"( x )=−incógnita1
- Segunda Derivada :
a""(incógnita)=1incógnita2a"( x )=incógnita21Dado quea""(incógnita)>0a"( x )>0, la funcióna(incógnita)=−En(incógnita)k ( x )=−en ( x )es convexa en el intervalo(0,∞)( 0 ,∞ ).
